Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(7): 3243-3254, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36723120

RESUMO

We demonstrate a novel and versatile sensing platform, based on electrolyte-gated graphene field-effect transistors, for easy, low-cost and scalable production of chemical sensor test strips. The Lab-on-PCB platform is enabled by low-boiling, low-surface-tension sprayable graphene ink deposited on a substrate manufactured using a commercial printed circuit board process. We demonstrate the versatility of the platform by sensing pH and Na+ concentrations in an aqueous solution, achieving a sensitivity of 143 ± 4 µA per pH and 131 ± 5 µA per log10Na+, respectively, in line with state-of-the-art graphene chemical sensing performance.

2.
Front Bioeng Biotechnol ; 10: 820217, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402402

RESUMO

A breathable tattoo electrode for bio-potential recording based on a Parylene C nanofilm is presented in this study. The proposed approach allows for the fabrication of micro-perforated epidermal submicrometer-thick electrodes that conjugate the unobtrusiveness of Parylene C nanofilms and the very important feature of breathability. The electrodes were fully validated for electrocardiography (ECG) measurements showing performance comparable to that of conventional disposable gelled Ag/AgCl electrodes, with no visible negative effect on the skin even many hours after their application. This result introduces interesting perspectives in the field of epidermal electronics, particularly in applications where critical on-body measurements are involved.

3.
Nanotechnology ; 33(21)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35168225

RESUMO

Printed electronics have been attracting significant interest for their potential to enable flexible and wearable electronic applications. Together with printable semiconductors, solution-processed dielectric inks are key in enabling low-power and high-performance printed electronics. In the quest for suitable dielectrics inks, two-dimensional materials such as hexagonal boron nitride (h-BN) have emerged in the form of printable dielectrics. In this work, we report barium titanate (BaTiO3) nanoparticles as an effective additive for inkjet-printable h-BN inks. The resulting inkjet printed BaTiO3/h-BN thin films reach a dielectric constant (εr) of âˆ¼16 by adding 10% of BaTiO3nanoparticles (in their volume fraction to the exfoliated h-BN flakes) in water-based inks. This result enabled all-inkjet printed flexible capacitors withC âˆ¼ 10.39 nF cm-2, paving the way to future low power, printed and flexible electronics.

4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7385-7389, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892804

RESUMO

The growing cancer burden necessitates the development of cost-effective solutions that provide rapid, precise and personalised information to improve patient outcome. The aim of this study was to develop a novel, Lab-on-Chip compatible method for the detection and quantification of DNA methylation for MGMT, a well-established molecular biomarker for glioblastoma, with direct clinical translation as a predictive target. A Lab-on-Chip compatible isothermal amplification method (LAMP) was used to test its efficacy for detection of sequence-specific methylated regions of MGMT, with the method's specificity and sensitivity to have been compared against gold-standards (MethyLight, JumpStart). Our LAMP primer combinations were shown to be specific to the MGMT methylated region, while sensitivity assays determined that the amplification methods were capable of running at clinically relevant DNA concentrations of 0.2 - 20 ng/µL. For the first time, the ability to detect the presence of DNA methylation on bisulfite converted DNA was demonstrated on a Lab-on-Chip setup, laying the foundation for future applications of this platform to other epigenetic biomarkers in a point-of-care setting.


Assuntos
Glioblastoma , Metilação de DNA , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Epigenômica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
5.
MRS Bull ; 46(6): 491-501, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720389

RESUMO

ABSTRACT: To realize the full gamut of functions that are envisaged for electronic textiles (e-textiles) a range of semiconducting, conducting and electrochemically active materials are needed. This article will discuss how metals, conducting polymers, carbon nanotubes, and two-dimensional (2D) materials, including graphene and MXenes, can be used in concert to create e-textile materials, from fibers and yarns to patterned fabrics. Many of the most promising architectures utilize several classes of materials (e.g., elastic fibers composed of a conducting material and a stretchable polymer, or textile devices constructed with conducting polymers or 2D materials and metal electrodes). While an increasing number of materials and devices display a promising degree of wash and wear resistance, sustainability aspects of e-textiles will require greater attention.

6.
Philos Trans A Math Phys Eng Sci ; 379(2203): 20200293, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34148418

RESUMO

In recent years, graphene has found its use in numerous industrial applications due to its unique properties. While its impermeable and conductive nature can replace currently used anticorrosive toxic pigments in coating systems, due to its large strength to weight ratio, graphene can be an important component as a next-generation additive for automotive, aerospace and construction applications. The current bottlenecks in using graphene and graphene oxide and other two-dimensional materials are the availability of cost-effective, high-quality materials and their effective incorporation (functionalization and dispersion) into the product matrices. On overcoming these factors, graphene may attract significant demands in terms of volume consumption. Graphene can be produced on industrial scales and through cost-effective top-down routes such as chemical, electrochemical and/or high-pressure mechanical exfoliation. Graphene, depending on end applications, can be chemically tuned and modified via functionalization so that easy incorporation into product matrices is possible. This paper discusses different production methods and their impact on the quality of graphene produced in terms of energy input. Graphene with an average thickness below five layers was produced by both methods with varied defects. However, a higher yield of graphene with a lower number of layers was produced via the high-pressure exfoliation route. This article is part of a discussion meeting issue 'A cracking approach to inventing new tough materials: fracture stranger than friction'.

7.
Neurobiol Dis ; 94: 245-58, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27388936

RESUMO

The neuromuscular disorder, spinal muscular atrophy (SMA), results from insufficient levels of the survival motor neuron (SMN) protein. Together with Gemins 2-8 and Unrip, SMN forms the large macromolecular SMN-Gemins complex, which is known to be indispensable for chaperoning the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). It remains unclear whether disruption of this function is responsible for the selective neuromuscular degeneration in SMA. In the present study, we first show that loss of wmd, the Drosophila Unrip orthologue, has a negative impact on the motor system. However, due to lack of a functional relationship between wmd/Unrip and Gemin3, it is likely that Unrip joined the SMN-Gemins complex only recently in evolution. Second, we uncover that disruption of either Tgs1 or pICln, two cardinal players in snRNP biogenesis, results in viability and motor phenotypes that closely resemble those previously uncovered on loss of the constituent members of the SMN-Gemins complex. Interestingly, overexpression of both factors leads to motor dysfunction in Drosophila, a situation analogous to that of Gemin2. Toxicity is conserved in the yeast S. pombe where pICln overexpression induces a surplus of Sm proteins in the cytoplasm, indicating that a block in snRNP biogenesis is partly responsible for this phenotype. Importantly, we show a strong functional relationship and a physical interaction between Gemin3 and either Tgs1 or pICln. We propose that snRNP biogenesis is the pathway connecting the SMN-Gemins complex to a functional neuromuscular system, and its disturbance most likely leads to the motor dysfunction that is typical in SMA.


Assuntos
Proteínas de Drosophila/metabolismo , Neurônios Motores/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN/metabolismo , Animais , Citoplasma/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...